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SUMMARY

The minimization of wave drag for thin aserodynamic shapes carrying
no 1ift is studled for conditions under which either base area or volume
is specified. When volume alone is given, the analysis is limited to
shapes with straight trailing edges normal to the stream direction. The
problem of minimization is reduced to one of finding a two-dimensional
harmonic function with known boundary conditions.

In several examples the theory is applied to the calculation of
minimum dreg. For given base area, general formulas are found thet cover
as special cases quasi-cylindrical bodies of revolution, wings having
plen forms with fore and aft symmetry, slender bodies, and certain classes
of yawed wings. The drag can in fact be determined from a unidimensional
flow analysis in a duct of known shape. For given volume, minimization
of the external wave drag of a ducted body of revolution of arbitrary
radius is achieved in closed analytic form.

In two cases, the determination of surface shape corresponding to
the minimm drag is carried to completion.

INTRODUCTION

To seek conditions under which the wave drag of a given wing or body
is minimized is to seek conditions for economical supersonic flight. It
is also a common experience, in the study of such problems, to find that
a gratultous economy appears to affect the analysis itself. Almost invar-
iebly, simplicity characterizes the final forms of the results in compari-
son with predictions carried out for wings and bodies chosen with less
discrimination. In the present paper, the minimization of wave drag for
aerodynemic shapes carrying no 1lift is studied. Conditions must, of
course, be fixed in order to prescribe the problem and, from a practical
point of view, this choice is less obvious than in studies of lifting
configurations where a given weight is to be supported aerodynamically.
The cases treated here apply the conventional constraints on base area
and enclosed volume to a variety of shapes. For a large class of wings
and bodies, the gbove-mentioned simplicity is especially apparent in the
case of given base area for, as will be shown, the general expression
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for minimm drag assumes the most elementary form possible while at the
same time retaining the relevant parameters and being dimensionally
correct.

The starting point of the present work is the expression for drag
given by G. N. Ward (ref. 1) in his study of thin lifting bodies, that
1s, wings and bodies for which linearized supersonic flow theory applies.
The body shape is assumed to be enclosed by a characteristic surface gen-
erated as the envelope of both the downstream-facing Mach cones, with
vertices on the forward edge of the body, and the upstream-facing Mach
cones, with vertices on the trailing edge of the body. Wave drag (plus
vortex drag when 1ift is present) is then given by a control-surface
integral of the induced velocities over the downstream portion of the
Mach envelope. This particular control surface has analytical advantages
similar to those exploited by R. T. Jones (refs. 2 and 3) in the use of
combined flow fields. dJones adopts a perturbation potential equal to
the sum of the potentials in forward and reverse flow. He then shows,
for exsmple, that the necessary condition for minimum wave drag is, for
a plan form of glven base area, that the pressure in the combined flow
Tield be a constant over the plan form. It follows that locally the
combined-flow potential is a two-dimensional harmonic function. If, how-
ever, the entire analysis is committed to the use of combined flows,
details of body shape (or, in the lifting case, surface loading) are lost.
Along the Mach envelope used by Ward the perturbation potential in forward
flow is equal in magnitude to its value in the combined flow field. Drag
minimization then determines conditions on the control surface and for the
problem of given base area the potential on the surface differs from &
harmonic function by a known amount. The conventional perturbation poten-
tial is retained but the determination of the body shape is still not
direct. Mathematically, one needs to invert an integral equation and the
question as to uniqueness of solution arises. The final examples in the
present paper will be concerned with the construction of minimum-drag
bodies of revolution from the known conditions on the control surface.
In these special cases the inversions of the Integral equations are easily

carried out.

ANAT.YSTS

The following analysis is divided into two sections. First, integral
relations are derived that determine the drag, base area, and volume of a
thin body in terms of induced velocltles on the rear Mach envelope. Sec-
ond, variational methods are applied so as to minimize wave drag subject
to the imposed constraints. The perturbation potential on the Mach enve-
lope is in this way related to a two-dimensional harmonic function

satisfying known boundary conditions.
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Relations for Drag, Base Area, and Volume

It is assumed that the given body
deviates slightly from a planar or a
cylindrical reference surface with ele-
ments passing through the leading edge
of the body and extending back parallel
to the stream direction. As shown in
sketch (a), the body reference surface
is denoted Z,, the over-all length
is 1, and a Cartesian coordinate
system is to be used with the origin
fixed at the foremost point of the
body end the x axis alined with the
free-stream direction. The constant
free-stream velocity, Mach number, and Sketch (a)
density are Uy, My, and p,, respec-
tively. The perturbation velocity components u, v, w induced by the
body in the x, y, z directions are given by the gradients of the per-
turbation velocity potential o(x,y,z), that is, by ox(x,¥,2), ¢¥(x,y,z),
Qz(x,y,z). Since supersonic small-disturbance theory is assumed to apply,

the flow field is governed by the linearized differential equation

o0y - Pyy = Ppz =0 (1)
where B2 = M2 - 1.

Three types of reference surfaces occur most often in practice:
first, plenes vhich are associated with the study of wings; second, cir-
cular cylinders which lead to the study of internal or external flow
around quasi-cylindrical bodies; third, lines parallel to the stream
direction. The last case is assoclated with slender-body theory and is
merely a limiting form of the previous cases. The thickness distribution
of the wing or body is fixed by boundary conditions prescribed on the ref-
erence surface. In order to avoid difficulties concerning gaps or holes
in the body surface it will be assumed that unique leading and trailing
edges exist and that the thickness distribution does not vanish between
these extremities.

In sketch (a) the characteristic surfaces enclosing the body are
indicated. The front portion, %;, is the envelope of the Mach cones
stemming back from the leading edge of the body and the rear portion, 3p,
1s the envelope of the Mach cones facing forwerd from the trailing edge.
The surfaces X; and %Ly intersect along the space curve I'y. As shown
by Ward (ref. 1), the wave drag can be expressed in terms of an integral
over the surface Xs. This follows from an application of momentum prin-
ciples to the three-dimensional region bounded by Zg, £;, and %p. The
force on the body is expressed vectorially in the form (see, e.g., ref. L,
p. 222)
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where the subscript o« denotes free-stream conditions, p and p are local
static pressure and density, is the local perturbation velocity vector,
and. the surface integrations extend over the bounding surfaces. In small-
disturbance theory the approximate relations

p/p, = 1 - M3(u/U,)

and
PPy = ~Poo [Uoou + % (-Bzu2+v2+we):| :

may be used.

If cos(v,x), cos(v,y), cos(v,z) are the direction cosines of the
inner normal v +to the enclosing surface, drag (wave plus vortex drag)
is, to the order of the approximations,

D=- p—;‘ﬂ{(vafwa) + u [Bzu-2v cos(v,y) -2w cos(v,2) ]}cos(v,x)dz
2

cos(v,x) cos(v,x)

(2)

An essentlal simplification of the drag formula follows if one
introduces the function X(y,z) where

X = (P[f(y, Z) > Z]

and x = f£(y,z) 1s the equation of the characteristic surface . The
function X 1is thus the value of the perturbation potential on Z,. The
direction numbers of the normal on this surface are given by

cos(v,x) :cos(v,y) :cos(v,z) = ~Lify:f, (3)
end the relation
fye + fza = 62
holds. Since
Xy =V + ufy Xy =W+ ufy
the drag formula becomes
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p .
D= - 7? L[f(xyz + %,Z)cos(v,x)d=n (4a)
PP .
Poo 1 xw2x 0 Jf 3
= - -2 dz - =2/ X =X ds
2 ﬂ dy dz 2 A0 (h'b)
s Cp
The latter relation is a direct consequence z)

of Green's theorem in the two-dimensional
cross-plane; vZ2 1is the Laplacian operator
(3%/3y2)+(32/322) and n is the inner nor-
mal to the boundary curves in the yz
plene. As indicated in sketch (b), the
integration in equation (4b) extends over
the area S which is the projection of I,
on the plane x = const. Along the outer
curve C,;, which is the trace of the curve
'} in the same plane, the function X
venishes since I'y also lies on the Mach
cones from the leading edge. The inner
curve C, 1is the trace of the cylindrical
reference surface. Sketch (b)

In order to evaluate the base area external to the reference sur-
face Iy, it is sufficient to apply over the surfaces Zo, L1, and Zp
the first-order form of the integral expression for continuity of mass
flow. This conservation relation is, for compressible flow,

J?pp éi (Ux + 9)AZ = 0
o 1%

end to the order of the present linearized analysis becomes

19
ool [] 5 $2 05 +
o0
Zo

o] wﬂ[_ﬂz v cos(v,y) L cos(v,2z) :lcos(v,x)di‘. _0

o Uo cos(v,x) Us cos(v,x)
Iz

where the two integrations extend, as indiceted, over 2y and the rear
Mach envelope ZI,, respectively. In linear theory the term (1/Uy) (dp/dv),
appeaxing as the first integrand, is equal to the slope, relative to the
stream direction, of the body surface. The x-~wise integration of the
first integral thus ylields the difference in body ordinates at the trail-
ing and leading edges and the complete integration can then be written
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where A is the increment of area between the nose and tail of the body.

In the notation of equations (3) and (4), continuity of mass flow thus
leads to the desired relations

A= - I}:ﬂ (%yEy#X,2,)ay 62 (52)
=iﬁxff@a+ifx%® (5b)
S Co

It remains to determine an analogous e@fession for the volume V

between X, and the body itself. The starting relation is Green's
theorem written in the form

MQ(Um+u)dx dy dz |

p

= -ﬂpx -aa—v (Ux+o) A2 -wx{a% [p(Uw+<Px)]+'§j (Dqu)+*a-a; (DCPZ)} dx dy dz
P T

where T 1s the three-dimensional region enclosed by the surfaces g,
Z,, and %,. The factor within the braces, in the final term, is, however,

zero throughout the region for steady-state, continuous, compressible flow
conditions. To first order, the relation becomes

=ﬂx -ggd}l‘.+\‘[7‘[-[32u+vgg-&&'l’—y—)—+WC—OEQ"—’Z-l cos(v,x)ds
v
z

cos(v,x) cos(v,x)
o Za

If, in the first term, the x-wise integration is performed amnd, in the
second term, the boundary conditions on %y are introduced and an x-wise
integration by parts is carried out, one then gets

B"i/fx dy dz = UwaN(f,s)ds - UV +ﬂf(xyfy+xzfz)dy dz
5 2

S
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where N = N(x,s) is. a measure of the deviation of the body from the con-
trol surface, that is, the distance measured normal to X, between Zg

and the body. Thus N = N(f,s) is the deviation of the body from the
control surface at the base. From Green's theorem, the last term is

‘_/]‘f(xyfy&xzfz)dy dz = - %[/\xvzfzdydz-%éfx %—ii ds
s ' s .

and the volume formula becomes

_ 1 2 1,2, 2 =2 1 Qf_z_
V—ffN(f,s)ds-EE;[[XV[fE+§B(y+z):|dydz—2Um Xands
Ca S Ca

(6)

Further simplification of equation (6) occurs if the trailing edge
of the body lies in a plane perpendicular to the x axis. The first
integral in the right member then becomes 1 +times base area where 1
is body length and the term can then be re-expressed by means of equa-
tion (5b). For trailing edges normal to the stream, volume then becomes

V- e—i-gﬂxv‘g[(z-f)a +z ﬁa(yﬂza)]dy az - Q—Iljgfx 2 (1-£)%s
G2

(7

Solution of Variational Problem

By means of the previous relations, wave drag can be minimized for
prescribed vaelues of incremental base area, A, and volume, V, external
to Z,. Since equation (7) is to be used, results involving volume v
will be applicable only to configurations with trailing edges normal %o
the stream direction but this restriction need not be invoked when condi-
tions are prescribed solely for the area A. The formal solution of this

isoperimetric problem is achieved through the minimization of the
expression
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I =D - AN + uV (8)

vwhere D, A, and V are given, respectively, by equations (4b), (5b),
and (7) and A,p are Lagrangian multipliers. TLet X be replaced by

X + ay(y,z) vhere 1(y,z) represents a variation that satisfies the same
boundary conditions as X on Ci end Cp and o is a constant. The
necessary condition for minimization is that the expression

2 A 1) - 2 1 ,2,.2 =2
gw{x+p&%f+2 = [(1 £) +-2-B(y+z )]}dydz+

poooo

d [ A u 2
L X+ =7 4 ——— - =
Cf 2 . B (1-£) :Ids 0
2

holds for all 1. The following differential equation and boundary con-
ditions must therefore be satisfied

N

v2x+—%—f+ s [(1-f)2+%[32(y2+z2)]}=0 in S

3 A B a2l _ (9)
S [X ¥ _ £+ o (1-7) i} =0 on C, >

X =0 on Cy

J

Equations (9) are closely analogous to conditions arising in the
minimization of wave plus vortex drag for wings having given 1lift and
glven center of pressure. It should be remarked that the particular
form of the term involving (y2 + 2z2) in the bracketed term of the har-
monic differential equation is somewhat arbitrary and thaet, for exeample,
the equation could be changed to one of the Poisson type with the term
in question appearing in the right member as a constant times the
Lagrangian multiplier u.

For purposes of direct solution it is sometimes preferable to
introduce the function Q(y,z) in equation (9) where

- A B - L
a(y,z) = x + P £+ T [(1 £)2 + A 32(y2+z2)] (10)
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The equations to be solved are, then,

V2 = 0 in S
d . m?
3 = Togn on (y&sz) on Cp (1._1)

0= e b [z lezana)| o o
PooUco 2pUc0 2

The function X +thus differs from the harmonic function Q by an smount
given explicitly in terms of the characteristic surface Z..

An important expression for the wave drag can be derived from equa-~
tions (9) without further knowledge of the solution. For, from equations
(40) end (9), one has

D = % V[/q XVZ{ 3]00 £+ gszm [(7,-:’:’)’2 + % Bz(y2+22-)J}dy dz +
5

Po [ 3 [_A b 2
5 fxan [:pooUoo £ + PR (1-£) :lds

Ca
and, by comparison with equations (5b) and (7),

Ay K .
D=gh-35V (12)

In order to eliminate the Lagrangian multipliers, the solutions of equa-
tions (9) or (11) are needed. It is of interest to remark, however, that
comparisons with results based upon combined-flow considerations show
that for given base area and zero volume A can be identified with
pressure in the combined-flow field and that for given volume and zero
base area (closure) p i1s the pressure gradient in the combined-flow
fleld (see ref. 2).

APPLICATIONS

Equations (9) or (11) determine the perturbation potential on the
rear Mach envelope and thus lead to the evaluation of wave drag in equa-
tions (4). Particular applications are studied in this section. First,
bodies with base area prescribed along a trailing edge are considered
alone, OSecond, more particular cases of given volume and zero hase area
are treated., For given base area, it is proper to think of the body as
extending downstream from the trailing edge along a cylindrical surface
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having elements parallel to the stream direction. A semi-infinite shape
then results. If the tralling edge is of supersonic type, all influences
downstream of this edge can have no effect on the forward portion of the
body end, except for the base drag arising from the unknown pressure at
the trailing edge, the wave-drag calculations apply without regard to the
cylindrical afterbody.

The two final bodies given here show how, for particuler examples,
the actual surface shepe can be determined from a knowledge of the func-
tion X. Bodies of revolution are chosen for the examples since the
integral equations that appear in the analysis involve a single integra-
tion. In general, double-integral equations will result and determina-
tion of surface shape becomes correspondingly more difficult, if possible
at all.

Wings and Bodies Having Given Base Area

The constraint on volume is now removed and the dependence of drag
on base area alone is considered. From equation (10), with p = 0, and
equation (La), drag is

D= ﬂ (9y240,2)ay dz - 3- ﬂ (Eyfy+£20z)dy dz +
S S

2
QPZ—UG? f (£y24£,2)dy dz (13)
S

Green's theorem can agein be used to rewrite the first two integrals and
the last term is simplified by virtue of the relation £y® + £, = g2
In this manner one gets

D=—%°2v[fnvzndya.z—— fﬂ-—-d.s+ ﬂfvzﬂdydz+

s C1+C2

f £ %’ as + 22 g3
C1+Cp hqm

&>

where, in the last term, q, is dynamic pressure | = % qQQﬁ%). From equa~
tions (11), this relation reduces to
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D= A J[lég £ ds + X ] (1k)
22U, K on hq
1

Further reduction of equation (14) depends on & knowledge of the
explicit solution of equations (11). A large and particularly interest-
ing class of wings and bodies for which the solution is immediate is
characterized by the condition £ = const. on Cj. Since x = f£(y,z)
1s the equation for the rear Mach envelope, the imposed condition implies
that the outer curve Iy of this envelope lies in a plane normal to the
streem direction. For example, all wings'with plan forms having fore and
aft symmetry satisfy this requirement as do also all pointed configura-
tions with subsonic edges so long as the nose and tail vertices determine
e line parallel to the stream direction. The solution of equations (11)
is then

= const.

and equation (14) reduces to

D = 22 @35 ‘ (15)
Lq, :

By means of equations (12) and (15), N can be eliminated and drag
expressed in terms of the geometry of the body or wing. The result is

D _ A2
G (-1)S (o)

The simplicity of equation (16) is remarkable and examples of its
rather diverse applicability are given below. Before proceeding to these
applications, however, it should be noted that a similar result applies
to all planar wings for which the surfaces £, and &, intersect along
any plane parallel to the 2z axis. The former condition that the curve
'y lies in a plane normal to the stream is thus relaxed so that
x = £ =m(y + by) on the curve Cj, where m(<B) is the slope of the
plene of Iy relative to the stream direction. The solution of equa-
tions (11) is

_ Ao
Q= . (y+bo) in 8

o000

and it follows that

cos(n,Y) on Cjy
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After substitution of these results into equation (14), one gets

D= hqw (pZ-m®)s (17)

In this latter case, therefore, equations (17) and (12) give

D ___AE AZ
9% S(B2-m®)  (MP-1-m2)S (18)

Ducted body of revolution with pre-
scribed end diameters.- This problem was
first considered by Parker in reference 5.
As shown in sketch (c), a shape with minimum
external wave drag is constructed so as to
have an initial radius Ry and a final
radius R;. In order that the previous
linear theory should apply, the restriction
is made that the ratio B[R;-Rz|/1 should
be a small quantity. If the origin of axes
is in the front face of the body, the fore
and rear Mach surfaces are

Sketch (c)

= B(r-Ry) x~-1 = -B(r-R,)
.and the curve C; 1is a circle of radius Ry where

= ( 1+BR1+BR2 ) /28

From equation (16) drag is

D M(Ry2 - Ro?) x
D _ R (192)
9%  (14BRy+BRo)Z-UB7R,

Equation (19a) is of particular interest since it represents a whole
spectrum of results that extends from slender-body theory, for BR1/1

and PRp/1 small, to two-dimensional theory, for @Ri/l and BRp/1 large.
The slender-body result leads directly to the familiar Kérmén oglve
formula (ref. 6)

Dx  4A® (19b)

Qe w12
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Elliptic plan form with after-
body.- The problem of given base Y?
area along the rear edge of an ellip-
tic wing was(considered first by
R. T. Jones (ref. 3). The figure is
a semi-infinite body with a cylin- ‘E_2> \_2% =
drical shape drawn downstresm of 4’/4{:_1 -
the rear edge of an ellipse, see
sketch (d). The equation of the f—— 20—
plan form outline is assumed to be

Sketch (4)

Tl
Tl
:_,

and the enveloping Mach surfaces are determined completely by the fore
and aft Mach cones with vertices along the supersonic-edged portion of
the plan form, that i1s, the abscissas of the vertices lie within the
reglon

[x] < a?/(a2n02p2) /2
The curve Ci; has the equation
Nl + z2
[(a24b252)1/2/ﬁ]2 (a/B)2

and is an ellipse with foci at (+b,0). Equation (16) then yields

D _ A2
qm - T[a(8_2+b232)112 (203-)

If drag coefficient Cp 1is based on plan-form area, equation (20a) can
be re-expressed as

AN R>
Cp = <’ %) (20p)
o [Ba+(1k/ﬂm)2]l/2
since the aspect ratio of the wing is = (4b) /(na). Perhaps the most

convenient formula for comparison follows from equations (19b) and (20&)
if the drag of the wing is expressed in terms of the drag of a Kdrmén
ogive with the same length and base area. The ratio is given by

_ a - 1 (21)

D
X (a20282)*/% [0 (xpm/u)2T
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The wave drag of the elliptic wing with cylindrical afterbody, in the
limit as aspect ratio approaches zero, is equal to the drag of the Kdrmédn
ogive and afterbody. For finite values of aspect ratioc, the wave drag

of the flat wing is smaller than that of the body of revolution, the
initial deviation of the ratio from unity being proportionsl to (BAR)e.

Tf&pezoidal plan form with afterbody.-~
vi . As a third example, consider a trapezoidal

plan form of arbitrary taper ratio with
base area along its tralling edge fixed.
w [\S
—> —2b

When the tralling edge is of subsonic type
a cylindrical afterbody is assumed added.
X As shown in sketch (e), root chord is
equal to 2a and span equal to 2b. The
tip chord is 24 8o that taper ratio Ag
+2d4 and aspect ratio MR may be introduced
p—20— in the form

|
|

|

=d
Sketch (e) A /2

R

2b/[a(1+n,) ]

So long as the leading edge of the
wing is supersonic the characteristic
trace C; 1is as shown in sketch (f) and

is composed of arcs of circles and straight
a\| lines, the radii of the inner and outer
’ »y circles being a/p and d/B, respectively.
a/B d/8 The distance between the centers of the
two outer circles is 2b. Once the lead-
ing edge of the plan form is subsonic, the
2b — central circle of sketch (f) blankets the
. other parts of the figure and C, 1is the
Sketch (f) circle of radius a/B.

T

The area S 1s the sum of elementary geometric areas and is given

by

.
=2 507+ T meon o s )|

where o, shown in the sketch, is given by
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( 2(1-7g)

arc sin ’
BR (l+7\o)

noja

2(1-0,) S BR (142)

, 2(1-2g) 2 BR (140g)

15

From equations (16) and (19b) , the minimum drag of the trapezoidal wing
relative to the drag of the Karman ogive of equal length and base area

is

T

2
D

1/2

when

2(1-7) S BR (142)

D -1
Dx

when
2(1-2,) 2 BR (1+),)

Special cases of interest are:

Rectangular wing (A, = 1)

D _ 1
X 1+ (4BR)/x

Diamond wing (A, =0)

1

o (L) [(140g) ZBZRZ -1 (1-0,) ®]1 ™/ T-2(1-7,®) axe cos[

D
Dx

=1, BR<2

1 2 1/2 2 2\’
1+ ;t- [(BB) - }-I-] - ; arc COSG._HR-)

2(1-2)
BR (1+2o)

2 < BR

5 G

5\

e

(23)

(2k)
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Sketch (g) shows a plot of D/Dg against BAR for the elliptic,
rectangular, trapezoidal, and dismond plan forms. Base area and length
of the wings are equal to these parameters for the Kdrmén ogive. For
large values of BAR +the relative drag decreases as l/ BAR. As the wing
plan forms become slender, drag of the elliptic and rectangular wings
approaches in the 1limit of vanishing BMR +the drag of the ogive. The
tapered wing, on the other hand, has a value of drag equal to that of the
ogive for all values of taper ratio and aspect ratio satisfying the
inequality 2(1-No)2 BR (1+No). This relation is satisfied so long as
the edges of the wing are subsonic. Changes in sweep angle of the lead-
ing and trailing edges produce no further change in the minimum drag of
the configuration so long as the base area is held fixed. The value Dg
is the minimm drag for all such configurations lying within the fore and
aft Mach .cones from the nose and tail of the wing. BExcept in the case of

the rectangular plen form, the curves of D/Dg have zero slope at their
peak values. .

1.0
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] \ N S -
ol AN \ N Elliptic
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Sketch (g)
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angle of yaw ¥ can be calculated i
from equation (18). In order to
- Justify this statement it is suffi-
l
l
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It should be noted that among the optimum configurations considered
here the Kdrmsn ogive has the greatest value of wave drag for given
length, base area, and Mach number. The generality of this observation
is apparent from equation (16). Let the family of wings include all plan
forms for which the curve [; lies in a plane normal to the stream direc-
tion; the maximm value of minimum drag occurs when S 1s & minimum and
this occurs when the trace Cs 1is the circular curve associated with the
Kdrmén ogive of equal length and base area.

Yawed. elliptic plan form with
afterbody.- For given base area, the b—2b—
drag of an elliptic plan form at

cient to show that the characteristic
curve I'y lies in the plane

x=f =m(y + by). The trace of Ty
in & yz plane 1s, in fact, another
ellipse and the dimensional relation- |
ships between the plan form and the -
trace are as shown in sketech (h). It

is convenient in the derivation of |
these results to proceed inversely |
and to determine the plan form as an I
envelope of curves given by the inter- |
I
I

N
8
‘ l X=pLy

|

|
|
.

sections in the xy plane of fore and
rear facing cones with vertices on TI'j.
Since the streamwise position of the

|
origin is of no direct significance, I
the space curve TI'; may be assumed | | I
given by | ‘
B2 (C2
(25)
x=my, m<§p . .

The Mach cones with vertices at the . |
point (x1, ¥yi1, Zz1) on I3 .are | 2B |

5 o ' Sketch (h)
(x~x3)2 = B[ (y-y1)® + (2-21)"] (26)

where

2
(B2-y12)

Xy =0oy1 , 2y

Y
%3
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The parametric equation of the envelope in the yz plane is given by
equetion (26) with z = O and the y; derivative of the same expression,
that is, the relations

B2[(x-my1)2 - B2(y-y1)2] = p2C3(B3-y13)

I

[B2m2-82(B2-C2) ly1 = (mx-B2y)B2

The envelope is, therefore,
(B2-c2)x2 - 2mB?xy + (n®B24p202)y2 = C2[p3(B%-C2) - n?B2]  (27)

Equation (27) represents an ellipse so long as the initially chosen m
satisfies the inequality

i < p2(B2-C?) /B2 (28)

The elliptical plen form is fixed by its major and minor axes and
angle of yaw. The relationship between the plen form and trace curve is
more convenlently carried out, however, in terms of the three quantities
1, b, p vhere 1 1is streamwise length of the plan form, 2b 1its width,
and x = py 1is the line passing through the points on the plan form
vhere y = %b.

Elementary calculetions performed with equation (27) yield the
following relations

1/2 = (B2m2+p202)1/2 (292)
b = (B2-c2)V2 , (29b)
mB2
LT RP (29¢)
-2mB2
tan 2y = (294)

(B2-c2) - (m®B24p3C2)

In sketch (h) the plan form is also circumsecribed by a parallelogram
with sides inclined at the Mach angle. The equations of these lines are

x = By £ (B-m)B x = -By * (B+m)B

from which it follows that their outermost intersection points are at
¥y = B and the line connecting the intersection points is x = my.
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The above results thus show that the Mach lines circumscribing the
plen form can be used to determine the span of the trace of I'y and
the angle of inclination of the plane of TI';. The span of the plan form
is, moreover, equal to the distance between the foci of the elliptic
trace. ’

From equations (18) and (19b) the drag of the wing and afterbody
relative to the drag of the Kdrmén ogive of equal length and base aresa
is given by . :

D _ 12 = BPm2+p2c2 (30)
Dy  kBc(p2-m2) BC(p2-m2)
The results can be summarized as follows
i/2
D _ |mpaeer] (14p2e2)-bpayaee] = 1
h 2
Dk |1-p2e24[ (1482£2)"-4p2u2e 41 ™ 2 [ (14p2e2)2-Lp2pzee] /2
' (31)
he -
R = E = 2b/1 32)
a(1-p2e2) Y2 7 / (
2ug® '
ten 2§ =~ ;= (33)
Sketch (1) is a plot of D/Dx |
ageinst angle of yaw for M =2 ‘ . a
and MR = 4/x, 4, 8. The smallest \ asr
of these values of aspect ratio 8| [ ) —— g
corresponds to a circular plan ) R — 8
form and obviously must be inde- ‘6 ! \
pendent of V; the drag ratio is o / \
D/Dg =N2/2 and this is in agree- B, I\
ment with equation (21) for the 4 - \
special case of the circular wing. /'/,s\ \‘
Severel limiting forms of equa- ys N \‘
tion (31) are of interest in show- 2 - AN
ing the variation of drag. For | e\
example, vhen p = O, the plan o i O

form is unyawed, R = Lt/x and
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_:Q..= 1 _ 1
D (14p262)Y%  [1+(mpm /4)2]M 2

as given in equation (21). This relation furnishes the values of D/Dx
in sketch (i) at ¥ = 90° If pt =1l and £ £0 one has R = o
¥ = arc tan £ and .
D _ 1
P (1-p2tan?y) ¥

This is the general drag relation for the yawed wing when aspect ratio
becomes infinite. It is to be noted that drag remains finite except when
the angle of yew is equal to the free-stream Mach angle. In sketch (i)
the drag curve for infinite aspect ratio must therefore have a singularity
at ¥ =45° If pt - 1l and ¢t = O so that aspect ratio remains finite,

it follows that ¥ => O and D/Dx = 1.

Ducted Body of Revolution of Given Volume

External wave drag of a quasi-cylindrical
body of revolution is to be minimized, see
sketch (J). The radii of the body at the
nose and tail are assumed equal (=R) and the
volume, V, of the body external to the refer-

U ence cylinder is a known comstant. The value
— of the minimm drag and, as will be developed
—— in the next section, the evaluation of the
NV body shape cen be determined from the solu-
\gb/ tion of equations (11). The equations of the
p——1— fore and rear Mach envelopes are given
respectively by
Sketech (J)
x = B(r-R) x=f =1~ B(r-R) = B(2h+R-) (34)

where the constant h (=Z/25) is introduced for convenience. The curve I'y
is a circle of radius r =R + h 1in the plane x = Bh and equations (11)
thus take the form
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0 =0 for TSR+h W
d HBZR
— Q) = at r=R
. R , ) (35)
AB up? I, (Reh)2
Q= h + h —_— =
ol Dol [ + > ] at r=R + h

The solution of equations (35) can be expressed in the form

Q = k1 + koln[r/(R+h)]

where, from the boundary conditions,

B 2 R+h) 2 2p2
k-l = h + uB l:hz + -(——')—‘ ) k2 = uB R
Pooloo 2p.U0 2 2p..U,

This result, together with equation (10), determines the function X
once the relationship between A and p 1s established from the body
closure condition. If the known quentities X and £ are substituted
into equation (5b) and A set equal to zero, the desired relation is
seen to be

A = hup (36)
and the final form for Q is
pp= [ 2 (R*h)z 2 r ]
Q:—..___. h —— ——
5 3= + 5 +R=ln R (37)

Drag can now be evaluasted directly. A parallelism with the deriva-
tion following equation (13) can be maintained if equation (4a) is used
and the potential is written

X = Q(y,2z) - F(y,z) (38)

vhere, from equation (10),

e [T Tl (39)
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Drag is given by
P .
D= ?\/f(QyZ'l‘Qza)dy dz - pwﬂ—'(Fy\(Ly’i‘Fzﬂz)dy dz + B_E_f/'(Fyz_l_FzZ)dy dz
S S S

If Greent's theorem is used in the first two integral terms, along with the
boundary conditions, one has

= 2?LZ7“(Fy?+FZZ)dy dz + 2§1ij S, 48+
S

Cy
Poo pe2 3 (7%+2%)
??}/P(EF'Q) 20U, o0 2 as (ko)
c2

Equation (40) applies in general. For the particular problem of the
ducted cylinder, equations (34) and (39) give

2
F-tP [3112 + (R#h-1)% + Ef}
20, U, 2

and substitution in equation (L40) yields

4 2

D = Bq: {j%’<23+h)[(34h)? - 382] + R*n DB (41)

X
8 R

[

The multiplier p can now be eliminated between equation (12), with
A = 0, and equation (41). The final result assumes a relatively concise
form when written as follows

D _ s
a, 1%(o) (h2e)
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where

. 2 _ | 2 4 1420 _ BR
¢(o) = 28 {(l+ll-o)[(l+20) 126°] + 6o in - } , 0 =—

As in the case of the quasi-cylinder with given base area, these
results cover the entire spectrum of fineness ratios and yield, in their
limiting forms, the results of two-dimensional airfoil theory (biconvex
section) and slender-body theory. The latter case, which is the Sears-
Haack slender body (refs. 7 and 8), corresponds to o = O. Equation (42a)
then becomes

Ds.p  128v2

9 w14

(42b)

The above problem was considered previously by Heaslet and Fuller
(ref. 9) without recourse to the present techniques but, rather, after
expressing drag in terms of the source distribution that could be assumed
to generate the external shape of the body. In this approach it becomes
necessary to find first the source-distribution function, under minimizing
conditions, and to calculate drag and volume subsequently. The details of
the calculations are thus less direct since the desired quantities are
expressed as integrals involving the hyperbolic influence function of the
supersonic source. In reference 9, the function C(o) of equation (L2a)
appeared in the form (in & slightly modified notation)

1
o(o) = f [(m20) (1-ms20) /2 [n(1-nE-o(1-4o) (€-B) Jan  (43)

where K and E are elliptic integrals of the first and second kind,
respectively, of modulus

=[ n(1-n) ]‘”2
(+20) (1-n+20)

The immediate adventage of equation (42a) is, of course, the natural
advantage provided by any analytic representation with its precise deter-
mination of magnitude and rate of change. From a disparate point of view,
the equivalence of the two results gives not only a new fundamental iden-~
tity in the theory of elliptic functions but also indicates a method
whereby further identities can be generated. From the standpoint of
direct application, however, the results of reference 9 remain unmodified.
The calculations that were used to plot the variation of C(c¢) were found
to check to at least four significant figures with the present formula
and thus provided a satisfying conflrmation of the numerical techniques
used in the original evaluation.
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Determination of Surface Shape

In the calculation of minimum drag for the two families of ducted
bodies, the value of the perturbation potential on the rear Mach envelope
becomes availgble in explicit form. It is therefore possible to seek the
source distribution function B(x) generating the disturbance field on
the rear surface; once B(x) is kmown the body shape can be calculated
as the final step in the analysis of the minimum drag bodies. When the
source distribution is confined to a single lihe segment, B(x) appears
as the solution of a single-integral equation. The origin is conven-
iently moved to the starting point of the source distribution (x = -BR
of sketch (h)), so that B(0) -= 0. For bodies of revolution, the
perturbation potential is known to be given by

-x-Br By ) dx
- 2 ()

o Llam)®-p2rR)

q)(x)r) =

Since B(0) = 0, differentiation and integration by parts yields

1 x-Pr XHBr-x 1/2
- - skl atdieie’ 3 1
Boy + o = 5— [x-Br—xl] B (x1)dx;

vhere the prime denotes differentiation. The rear surface is

x==7 1 + 2BR -~ Br

Il

and on this surface

Xp = -Boy + @

Hence, the integral equation
1+2BR-2BT

2nrX, =\/P

(o]

1/2 .
1+2BR-x3
':7,+2BR-2Br_xl] B (x1)dxy (45)

results where 2ﬁrxr can be assumed known. The transformations
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t = 1+2BR-2Br

G(x) (Z+23R-x)l/2B’(x)

Il

H(t)

i

2nrXe(r)

lead to the Abel type equation

¥ G(xl)dxlv
f(+) =f-——-——-
)

(t'xl)l/z

and its solution is known to be

-1 a [ H(t)dty
) =% z—rf T

For the case of given base area (p
was { = comst., hence, from equation (10)

X = = A £ + const.
o.U

[vollve]

and
- .

[e2Dave]

From equations (12) and (15) it follows that

_ 29 A
p=s

so that one has

B(t) =

U
:ﬁA (142BR-t)
S

25
;
} : (46)
J
(47)
(48)

= 0), the solution of equations (11)
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Substitution into equation (48) yields G(t) and from equations (L46)
the source distribution functions (with x as in sketch (h))

7
B'(x) = U:A 1-2%
P=S [ (x+BR)(1+BR-x) 11/2
B (19)
B(x) = 2‘5‘% [ (x+BR) (1+8R-x) 1*/2
_ J
For the case of given volume, equations (37), (38), and (39) yield
B2
X, = 22 [R2 4 2(Rsh)r - 377]
20U

and the détermination of the source distribution function follows directly.
The final form of this function is

1~-2x

1+2BR (50)

B(x) = — = {(7'-2X)[(X+BR)(Z+BR-X)]1/ Z- 2p®R%arc cos
21%¢(o) )

——

The geometries of the two families of bodies were calculated and
shown in reference 9 and will not be repeated here. Comparable results
to those of sketch (g) are, however, given in sketch (k). TFor the case
of given volume, the drag of the quasi-cylinders relative to that of the
Sears-Haack slender body is, from equations (42a) and (42b),

10 )

D 7

8 = (51)
Dg_g 128C(o)
° For the case of given base area the
drag formula is reduced to the form
4 it would take in reference surface
theory. TUnder the assumption that
R, deviates slightly from R,,
2 equations (19a) and (19b) yield
3 10 5 20 25 30 D 1
BR/1 = = (52)
Dx 1+ ko

Sketch (k)
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CONCLUDING REMARKS

As given by equation (4a), drag is equal to the kinetic energy in a
two-dimensional flow field of unit thickness. Intuitively, the resulis
are remindful of the similar expression for the vortex drag of a lifting
wing In subsonic flow theory. In this latter Trefftz plane analysis, the
optimum field is represented by a harmonic function in the entire cross-
flow plane extermal to the trace of the body whereas, in supersonic flow,
an additional, outer, bounding curve C; appears and affects the induced
velocities and the wave drag. The flow fleld associated with minimum drag
due to 1ift remsins a harmonic field on the rear Mach envelope in super-
sonic flow (ref. 1) and, as shown in the present paper, the flow in the
nonlifting case is also a harmonic field with known additional effects.
Another point of similarity between the subsonic and supersonic theories
also appears: +the boundary conditions determining the induced field are
given along curves that are wmiquely determined by the wing or body but
the details of plan-form shape are not determined uniquely from the
bounding conditions themselves. Thus, in Prandtl's and Munk's vortex
theory, the flow in the Trefftz plane can be calculated but the chordwise
dimension of the wing disappears entirely; all wings with equal span have
the same minimum drag and the same spanwise distribution of loading for
minimum drag. It is obviously impossible to solve for details of the
chordwlse load distribution in this case. In supersonic theory the condi-
tions for minimum drag are given on a surface displaced from the body and
a loss in kmowledge as to plan-form shape is thus incurred. In the case
of the trapezoidal plan forms with given base area, minimum drag and
induced velocities on the Mach envelope remsin fixed for the entire family
of wings with subsonic leading and trailing edges. The solution of the
problem allowed for no storage of information gbout taper ratio and aspect
ratio once the wing was swept behind the Mach cone from the vertex. There
remains the final question, however, as to whether a multiplicity of solu-
tlons can be found. Suppose e plenar wing exists and consider the shape
equal. to the difference between the wing and the Kdrmdn ogive. From equa-
tion (14) the drag of the latter shape is zero. But for nonvanishing
thickness, wave drag can never be zero. The loglical contradiction implies
that the Kdrmédn ogive is the only minimum drag configuration within the
Pamily of traepezoidal plan forms with subsonic edges.

Following equation (12) it was remarked that the parameter A could
be identified with pressure in the combined flow field. An interesting

interpretation of the value of this parameter follows from the use of
equation (15). Eliminating drag between the two relations, one gets

— = == ' (53)
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The left-hand exXpression is half of pressure coefficient in the combined
flow field. Equation (53) states that the value of -7\/q°° necessaxry to

calculate minimum drag is equal to the pressure coefficient predicted by
linearized unidimensional. £low theory in & duct bounded internally and
externally by the characteristic traces, that is, the curves C; and Cz
of sketch (b). '

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., June 2k, 1957
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